A Novel Algorithm for the Maximal Fit Problem in Boolean Networks

نویسنده

  • Guy Karlebach
چکیده

Gene regulatory networks (GRNs) are increasingly used for explaining biological processes with complex transcriptional regulation. A GRN links the expression levels of a set of genes via regulatory controls that gene products exert on one another. Boolean networks are a common modeling choice since they balance between detail and ease of analysis. However, even for Boolean networks the problem of fitting a given network model to an expression dataset is NP-Complete. Previous methods have addressed this issue heuristically or by focusing on acyclic networks and specific classes of regulation functions. In this paper we introduce a novel algorithm for this problem that makes use of sampling in order to handle large datasets. Our algorithm can handle time series data for any network type and steady state data for acyclic networks. Using in-silico time series data we demonstrate good performance on large datasets with a significant level of noise. keywords: Boolean network, Inference, Sampling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Protection Guaranteed, Quality of Transmission Aware Routing and Wavelength Assignment Algorithm for All-optical Networks

Transparent All Optical Networks carry huge traffic and any link failure can cause the loss of gigabits of data; hence protection and its guarantee becomes necessary at the time of failure. Many protection schemes were presented in the literature, but none of them speaks about protection guarantee. Also, in all optical networks, due to absence of  regeneration capabilities, the physical layer i...

متن کامل

A Novel Hybrid Whale Optimization Algorithm to Solve a Production-Distribution Network Problem Considering Carbon Emissions

Nowadays, there is a great deal of attention for regulations of carbon emissions to enforce the decision-makers of production and distribution networks to redesign their systems satisfactorily. The literature has seen a rapid interest in developing novel metaheuristics to solve this problem as a complicated optimization problem. Such difficulties motivate us to address a production-distribution...

متن کامل

Optimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm

The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...

متن کامل

A Fast Approach to the Detection of All-Purpose Hubs in Complex Networks with Chemical Applications

A novel algorithm for the fast detection of hubs in chemical networks is presented. The algorithm identifies a set of nodes in the network as most significant, aimed to be the most effective points of distribution for fast, widespread coverage throughout the system. We show that our hubs have in general greater closeness centrality and betweenness centrality than vertices with maximal degree, w...

متن کامل

A New Algorithm for Load Flow Analysis in Autonomous Networks

In this paper, a novel algorithm for the load flow analysis problem in an islanded microgrid is proposed. The problem is modeled without any slack bus by considering the steady state frequency as one of the load flow variables. To model different control modes of DGs, such as droop, PV and PQ, in an islanded microgrid, a new formula for load flow equations is proposed. A hybrid optimization alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.07335  شماره 

صفحات  -

تاریخ انتشار 2015